Kumpulan Materi Kalkulus dengan Contoh Soal Latihan

Kumpulan Materi Kalkulus dengan Contoh Soal Latihan – Matematika merupakan mata pelajaran yang tidak lepas dari hitung-menghitung dan juga angka. Matematika sering kali menjadi musuh bagi para pelajar untuk mempelajarinya. Sebab mereka kesulitan dalam memahami dan mengerjakan soal-soal yang diberikan.

Diperlukannya latihan dan minat terhadap Matematika agar pelajaran tersebut menjadi menyenangkan. Salah satu cabang dari matematika ialah Kalkulus. Kalkulus merupakan salah satu bab yang sulit untuk dipahami. Agar kamu tidak kesulitan, seringlah kamu memperlajari dan menanyakan kepada pembimbing kamu. Usaha yang bisa dilakukan ialah dengan mencari contoh soal yang bisa dipelajari. Di bawah merupakan kumpulan materi Kalkulus yang bisa kamu pelajari beserta contoh soal latihan yang bisa kamu kerjakan setelah membaca materi yang disajikan. Silakan simak pembahasannya di bawah ini.

Kumpulan Materi Kalkulus dengan Contoh Soal Latihan

Kumpulan Materi Kalkulus dengan Contoh Soal Latihan

KALKULUS PROPOSISI DASAR-DASAR LOGIKA

Ilmu logika berhubungan dengan kalimat-kalimat (argumen) dan hubunganhubungan yang ada pada kalimat tersebut. Tujuannya adalah untuk memberikan aturan-aturan sehingga orang dapat menentukan apakah suatu kalimat bernilai benar. Kalimat yang dipelajari dalam logika bersifat umum, baik bahasa seharihari ataupun bukti matematika yang didasarkan atas hipotesa-hipotesa. Oleh karena itu, aturan-aturan didalamnya bersifat umum, tidak tergantung pada kalimat atau disiplin ilmu tertentu. Ilmu logika lebih mengarah kepada bentuk
kalimat (sintaks) daripada arti kalimat itu sendiri (sematik).

A. Proposisi
Proposisi adalah kalimat yang bernilai benar atau salah tetapi tidak keduanya.
Berikut adalah beberapa contoh proposisi:
a. 2 + 2 = 4
b. 4 adalah bilangan prima
c. Jakarta adalah ibukota negara Indonesia.
Kalimat-kalimat diatas adalah proposisi karena dapat diketahui nilai kebenaranya.
Kalimat (a) dan (c) bernilai benar, sedangkan kalimat (b) bernilai salah.
Contoh berikut ini adalah kalimat-kalimat yang bukan merupakan proposisi:
a. Dimana letak pulau Bali?
b. x + y = 2
c. Siapa namamu?
d. x > 5
Tetapi pernyataan berikut ini
“Untuk sembarang bilangan bulat n ≥ 0, maka 2n adalah bilangan genap.”
dan
“x + y = y + x untuk setiap x dan y bilangan riil”
adalah proposisi, karena pernyataan pertama adalah cara lain untuk menyatakan
bilangan genap dan pernyataan kedua waalaupun tidak menyebutkan nilai x dan y,
tetapi pernyataan tersebut benar untuk nilai x dan y berapapun. Bentuk proposisi
yang mengandung peubah seperti contoh diatas akan dibahas pada materi
Kalkulus predikat.
Proposisi biasanya dilambangkan dengan huruf kecil seperti p,q,r, . . .
Misalnya,
p : 6 adalah bilangan genap.
q : 2 + 3 = 7
r : 2 < 5

B. Mengkombinasikan Proposisi

Satu atau lebih proposisi dapat dikombinasikan untuk menghasilkan proposisi baru. Operator yang digunakan untuk mengkombinasikan proposisi disebut operator logika. Operator logika dasar yang digunakan adalah dan (and), atau (or), dan tidak (not). Proposisi baru yang diperoleh dari pengkombinasian tersebut dinamakan proposisi majemuk (compound proposition). Dalam logika, dikenal 5 buah operator seperti dijelaskan dalam tabel berikut ini.
Mengkombinasi Proposisi


Contoh:
Diketahui proposisi berikut ini:
p : Hari ini hujan
q : Murid-murid diliburkan dari sekolah
maka
p ∧ q : Hari ini hujan dan murid-murid diliburkan dari sekolah
p ∨ q : Hari ini hujan atau murid-murid diliburkan dari sekolah
∼p : Hari ini tidak hujan
p ∧ ∼q : Hari ini hujan dan murid-murid tidak diliburkan dari sekolah
∼(∼p) : Tidak benar bahwa hari ini tidak hujan
p ⇒ q : Jika hari ini hujan, maka murid-murid diliburkan dari sekolah
p ⇔ q : Hari ini hujan jika hanya jika murid-murid diliburkan dari sekolah

Untuk mengetahui seberapa paham kamu, silakan kamu kerjakan contoh soal kalkulus di bawah ini.
Latihan:
1. Periksalah apakah kalimat-kalimat berikut merupakan proposisi atau bukan.
Jika merupakan proposisi tentukan nilai kebenarannya.
a. 51 adalah bilangan prima ganjil.
b. Jumlah besar sudut segiempat adalah 1800
c. Mudah-mudahan jawaban kita benar.
d. 1001 ≤ 1001
e. Integral adalah operasi invers dari differensial.
f. Turunan dari f(x) = axn
adalah f’(x) = anxn-1
g. Cepat selesaikan latihan ini.

2. Buatlah negasi dari setiap pernyataan berikut ini
a. 3 + 2 ≤ 6
b. Harga π adalah 22/7
c. Dalam koordinat Cartesius: (a,b) = (b,a)
d. Paris tidak ada di pulau dewata.

3. Diketahui proposisi berikut ini:
p : Hari ini hujan
q : Hari ini dingin
Tentukan:
a. q ∨ ∼q
b. ∼p ∧ ∼q
c. ∼(∼p)

4. Diketahui proposisi berikut ini:
p : Pemuda itu tinggi
q : Pemuda itu tampan
Nyatakan dalam bentuk simbolik proposisi berikut.
a. Pemuda itu tinggi dan tampan
b. Pemuda itu tinggi tetapi tidak tampan
c. Pemuda itu tidak tinggi maupun tampan
d. Tidak benar bahwa pemuda itu pendek atau tidak tampan
e. Pemuda itu tinggi, atau pendek dan tampan
f. Tidak benar bahwa pemuda itu pendek maupun tampan

C. Tabel Kebenaran
Tabel kebenaran adalah suatu tabel yang memuat nilai kebenaran proposisi majemuk. Nilai kebenaran dari proposisi majemuk ditentukan oleh nilai kebenaran proposisi-proposisi pembangunnya. Jika kalimat majemuk yang akan kita buat tabel kebenarannya memuat n proposisi tunggal, maka jumlah komposisi nilai kebenarannya ada 2n. Berikut ini adalah tabel kebenaran dari operator-operator logika dasar.

Soal Tabel Kebenaran

Contoh:

Buatlah tabel kebenaran proposisi berikut:

∼(∼p ∨ ∼q)

Jawab:

Jawaban Tabel kebenaran

Kadang-kadang kita harus membuat tabel kebenaran yang memuat lebih dari tiga pernyataan dalam bentuk yang cukup kompleks. Misal pernyataan berikut ini:

[p ⇒ (q ∧ r)] ∧ [ ∼ p ⇒ ( ∼ q ∧ ~ r)]

Untuk membuat tabel kebenaran diatas mula-mula kita buat kolom untuk p,
kemudian berturut-turut q, r, ~p, ~q, ~r, q ∧ r, ∼ q ∧ ~ r, p ⇒ (q ∧ r), ∼ p ⇒ ( ∼ q ∧ ~ r) dan terakhir adalah kolom yang persis dengan pernyataan diatas. Ada cara yang cukup bagus untuk membuat tabel kebenaran agar tidak membutuhkan kolom yang terlalu banyak jumlahnya. Cara ini menuntut sedikit kemahiran, karena hasil akhir yang diharapkan yaitu nilai kebenaran pernyataan majemuk ditentukan oleh nilai kebenaran yang diwakili sebuah kolom tertentu. Sebagai contoh adalah tabel kebenaran untuk proposisi majemuk berikut:

(p ∧ q) ∨ ( r ∧ ~ q)

Tabel kebenaran

Kolom yang menyatakan nilai kebenaran proposisi majemuk diatas adalah kolom (4).

Penutup

Demikianlah kumpulan materi Kalkulus dan soal latihan yang dapat kamu pelajari agar kamu makin paham dengan Kalkulus. Jelajahi situs kami untuk mendapatkan berbagai informasi menari mengenai materi, soal dan pembahasannya serta yang berkaitan dengan pendidikan. Semoga bermanfaat dan terima kasih. 🙂

About Sheldonisme

Sheldonisme
Tindakan merupakan sebuah jembatan yang menghubungkan mimpi dan kenyataan

Check Also

Contoh Soal UTS Bahasa Indonesia Kelas XI SMA Semester 2 Tahun 2020

Contoh Soal UTS Bahasa Indonesia Kelas XI SMA Semester 2 Tahun 2020

Contoh Soal UTS Bahasa Indonesia Kelas XI SMA Semester 2 Tahun 2020 – Sebentar lagi …

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *